课程设计论坛

注册

 

QQ登录

只需一步,快速开始

发新话题 回复该主题

[毕业论文] 无穷多临界点的收敛性质 [复制链接]

楼主
文件格式:word
文件大小:2.00MB
适用专业:数学与应用数学
适用年级:大学
下载次数:0 次
我要下载:点击联系下载
论文编号:205003

资料简介:

毕业论文-无穷多临界点的收敛性质,共63页,

我们知道,对称山路定理可以得到${\bf

C}^1$泛函的无穷多个临界值。而最近,Ryuji

Kajikiya在文章\cite{RK}中不仅证明了这无穷多个临界值收敛到零,而且证明了满足相同条件的泛函有收敛到零的临界点序列。

在这篇文章中,我们先简要地介绍了Ljusternik-Schnirelmann亏格理论;然后回顾了文章\cite{RK}中的已有结果和证明的思路,

以及由张恭庆建立的局部Lipschitz泛函的Minimax理论。最后,我们尝试着将Ryuji

Kajikiya的结果推广到局部Lipschitz泛函的情形。

并且在一定的条件下,我们得到了收敛到零的临界点序列。


It's well known that we can obtain infinitely many

critical values of a ${\bf C}^1$ functional by the Symmetric

Mountain Pass Theorem. Recently, in Ryuji Kajikiya \cite{RK}, the

author has proved not only that the infinitely many critical values

will converge to zero, but also that there exists an critical point

sequence converging to zero. In this article, we first give a brief

introduction to the Ljusternik-Schnirelmann genus theory, and then

we review the main results and the main line of the proofs in the

article \cite{RK}, we also review the Minimax theory of the locally

Lipschitz functionals given by K.C.Chang. After that we try to

generalize the result of Ryuji Kajikiya to the case of a locally

Lipschitz functional. And under certain conditions, we get the

critical point sequence which converges to zero.


资料文件预览:
共1文件夹,1个文件,文件总大小:2.00MB,压缩后大小:546.76KB

  • 毕业论文-无穷多临界点的收敛性质
  • doc毕业论文-无穷多临界点的收敛性质.doc  [2.00MB]

我要下载:无穷多临界点的收敛性质
分享 转发
TOP
沙发

好啊
TOP
板凳

努力啊
TOP
地板

急需啊老大,能不能发给我啊,拜托了

236677854@qq.com
TOP
5#

看看啦。。。我有需要
TOP
6#

我要积分!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
TOP
7#

我要啊
TOP
8#

加油赚积分
TOP
9#

顶 ````````
TOP
10#

kan  kan  kan  可惜...我要努力//谢谢
TOP
发新话题 回复该主题